REFERENCE DESIGN PROCESS

1. Order a Nexvision Reference Design
2. Update your Specifications
3. Get your product Ready to sell

OVERVIEW

- Hardware video processing, up to a tera operations per second (10^{12}), FPGA/HDL based
- User accessible image processing framework environment to speed-up algorithm portage
- Nexvision’s image pre-processing advanced algorithm library
- Nexvision’s technical support for MATLAB or C to HDL coding optimization

IP SAMPLES

- Deconvolution
- Fusion of multiple shoot
- Optical enhancement and corrections
- Vibration stabilisation
- Compression/decompression
- Human body detection
- Shape, character recognition
- Traffic accident detection, behaviour & flow control
- Depth map
- 3D scene reconstruction

TERAPIX

Image Co-Processor
Reference Design

Hardware-Accelerated Image Co-Processor Reference Design

GOLD Sensor board
CPU board
I/O board
Other board

PIX TERA

Hardware-Accelerated Image Co-Processor Reference Design

REFERENCE DESIGN PROCESS

1. Order a Nexvision Reference Design
2. Update your Specifications
3. Get your product Ready to sell

www.nexvision.fr
Features

* High performance FPGA (Field Programmable Gate Array), based on latest 28nm process, low power
* Ultrafast & High resolution frame grabbing and processing - 12Mpixel@180fps
* Low Size, Weight and Power (SWaP)
* Support up to 4 independent video sensor boards

Applications

- Opto-electronics devices
- Multimedia processing
- Gyrostabilised video (broadcast, defense) on UAV
- Vision based vehicle guidance system or driver augmented reality
- Multispectral video boarder surveillance
- Multitarget video tracking
- Night vision, 3D range gating active imaging
- Blind Deconvolution
- Crypto accelerator
- Printed board, circuit board and LCD inspection
- Cinema video camera with real time effects
- Video post-production processing
- Automated license plate recognition (ANPR)
- High end digital signage or real time interactive showcase
- Compact low weight, low power consuming vision solutions
- Video camera with CPU intensive image processing (hand held smartcam)
- Multispectral / Immersive / Omnidirectional 360° camera (virtual speedome)
- Embedded video enhancement and image analysis, indexing before compression & transmission

Power supply and physical dimensions

- Input : 5VDC, 20W max
- Processing Board: 93mm (L) x 60mm (I) x 8mm (h)
- Temperature: 0°C to 50°C (-40°C to 85°C optional)
- Humidity: 10 – 90% non condensing

Market

- Vision
- Defense
- Medical image processing
- Transport
- High end video surveillance (boarders, urban, CCTV)
- Industrial process supervision and visual inspection
- Law enforcement & forensic
- High end multimedia
- High-Performance Computing (HPC)

Typical Processing Algorithms

IMAGE ENHANCEMENT

- Image sensor processing
 - CFA Bayer pattern to RGB (demosaicing), state of art non linear algorithms for very high quality color interpolation (*)
 - Auto exposure : fast adaptive for highly changing scene illumination conditions (*)
 - Multi-exposure or multiresolution, on a frame by frame basis (*)
 - Color matrix correction : dynamic, scene and illumination measurement based (*)
 - Automatic white balance - Application specific (*)
 - Gamma conversion & YUV/HSI color conversion, histogram, log, LUT mapping, segmentation, and thresholding (*)
 - Dead pixel correction
 - IR sensors non uniformity correction (*)
 - Anti flickering (*)
 - Image shot enhancement
 - Dynamic local tone mapping (Shadows and highlights)
 - High dynamic range (16bits resolution based)
 - 3D noise Filter (spatial-temporal). (*)
 - Contrasts and edges enhancement (algorithm type : USM - unsharp mask) (*)
 - Spatial filters
 - Deconvolution (*)
 - Image reconstruction model which integrate bayer pattern and color aberration (*)
 - Parallel algorithm on fpga which deconvolves the image using recursive algorithm which converge in few iterations. (new patent pending approach) (*)
 - Process of Deconvolution which integrate the sensor’s noise and which improve the denoising or the deblurring in function of user’s goal (*)
 - Myopic deconvolution to estimate the psf of optical and atmospheric aberration (based on fractal found in natural image) (*)
 - Lens defocused mechanically to estimate the psf (*)
 - Motion of camera could be integrated in deconvolution process (*)
 - Multi-channels deconvolution (*)
 - Frequency domain transformation
 - Fusion
 - Multiple shoot and/or multi angle of view in multiple spectral band : visible, Shortwave Infrared and Thermal Infrared (MWIR/LWIR), Terahertz, etc…)
 - Fusion with non-linear co-registration warping algorithm that corrects for visible-MWIR-LWIR versus thermal IR parallaxes and optical distortions
 - Autofocus : real time focus tracking with lens control loop (*)(*)
 - Optical enhancement and corrections
 - Optics’s aberrations corrections and super-resolution (*)
 - Atmospheric aberration correction (*)
 - Lens distortion correction
 - Lens distortion lateral and longitudinal chromatic aberrations, vignetting (relative illumination) correction
 - Lens barrel distortion distortion correction
 - Ultra wide angle lens projection correction (360° « FishEye » circle image real time dewarping) (*)
 - Co-optronics designed optics :
 - extended depth of view/digital autofocus - wave front coding
 - Anisotropic 2D image scaling
 - Vibration Correction – Video stabilisation
 - Close control loop multilevel stabilisation depending on amplitude-period (mechanical, optical, electronic and software)
 - Lens/mirror piezoactuator stabilisation control for angular movement correction (yaw and pitch)
 - Piezo-microactuator image sensor micro-scanning stabilisation control (close loop with 6 axis gyro-accelero sensors Nexvision’s “MULTILINK” board) (*)
 - Motion compensation :
 - virtual windows counter motion centring using feature points video tracking
 - Viewer pointed, automatic target tracking (gyrostabilized pan-tilt-zoom)
 - Virtual pan-tilt-zoom
 - Ultra high resolution video (X-HD**) (*) with Nexvision IMAX12MC
 - Multiple video sensors stitching to create panoramic images (*) with IMPANANO
 - 360° high-resolution, real-time warp video (*)
 - 2D/3D calibration
 - Compression/decompression
 - Studio visual effects
 - Back ground discrimination, correlation, gradient operation, Hough transformation, morphology, projection, edge thinning, line verification, rule based post processing, convolution, motion adaptive deinterlace, image restoration, etc…
 - User define algorithms

IMAGE ANALYSIS

- Feature points extraction and analysis
- Motion detection (*)
- Fire detection
- Human body detection
- Pattern matching
- Shape, character recognition
- Texture recognition
- Visitors/pedestrian counting
- Suspicious stationary object detection
- Multi-modal gesture recognition
- Content based retrieval & Query-by-content
- Sensors fusion (GIS positioning, accelero-gyro, ultrasound, radar,…) (*)
- Multispectral band facial biometric recognition (Visible/IRSWIR/LWIR)
- Depth map
- 3D scene reconstruction
- Registration - unified scene alignment – translation & scaled perspective
- Traffic accident detection, behaviour & flow control
- Auto exposure : fast adaptive for highly changing scene illumination conditions (*)
- Color analysis
- 1D and 2D measurements
- 1D and 2D code reading and verification

(*) *Indicate NEXVISION’s Image & Video processing algorithm and image processing primitives library (hardware implemented IP)*